2. Как устроен фотографический аппарат. Изображение предметов на пленке бумаге снимок это


2. Как устроен фотографический аппарат. Фотография

2. Как устроен фотографический аппарат

Различных по устройству фотографических аппаратов очень много, но все они построены по одной схеме (рис. 5).

Рис. 5. По этой простой схеме построены все существующие фотоаппараты.

Нетрудно заметить, что устройство современного фотоаппарата в принципе ничем не отличается от устройства его предка — камеры-обскуры.

В простейшем виде любой фотоаппарат представляет собой замкнутый со всех сторон светонепроницаемый ящик. В передней стенке ящика укреплено увеличительное стекло — объектив, — которое во время съёмки направляется на фотографируемый предмет (объектив современного фотоаппарата состоит из нескольких оптических стёкол — линз; собранные в общей оправе, они действуют подобно одному увеличительному стеклу).

Объектив образует на задней стенке ящика изображение предметов подобно тому, как это происходит в камере-обскуре. Таким образом, если на внутренней задней стенке ящика укрепить светочувствительную фотопластинку, то даже с помощью такого простого аппарата можно при некоторых условиях произвести фотосъёмку и получить удовлетворительный снимок.

Объектив часто называют глазом фотоаппарата. Однако, если делать такое сравнение, правильнее назвать глазом сам фотоаппарат, а объектив сравнить с хрусталиком глаза.

В самом деле, подобно тому, как хрусталик нашего глаза «рисует» изображение предметов на сетчатой оболочке глаза, объектив фотоаппарата «рисует» изображение на пластинке или плёнке[2].

Для получения резкого изображения предметов на снимке необходимо, чтобы пластинка (или плёнка) находилась на определённом расстоянии от объектива. Расстояние это изменяется в зависимости от того, на каком расстоянии от объектива находится фотографируемый предмет. Поэтому в каждом фотоаппарате имеется устройство, позволяющее изменять расстояние между объективом и пластинкой.

У одних аппаратов для этой цели стенки делаются в виде растягивающегося меха, напоминающего мех гармоники, — только обычно конической формы (рис. 6). У других аппаратов объектив укрепляется в выдвигающейся оправе (см. рис. 11).

Как же это расстояние определяется на практике? На рисунке 6 приведён один из современных любительских фотоаппаратов.

Рис. 6. Советский любительский фотоаппарат «Фотокор».

У этого аппарата для определения расстояния между объективом и пластинкой имеется рамка с матовым стеклом, которая вдвигается в пазы, устроенные в задней стенке корпуса аппарата. На матовом стекле можно видеть изображение фотографируемых предметов. Наблюдая за этим изображением и передвигая объектив, можно легко отыскать такое положение объектива, при котором изображение на матовом стекле будет максимально резким. Это называется «наводкой на резкость».

Рамка с матовым стеклом имеется лишь у фотоаппаратов, предназначенных для съёмки на пластинках.

Но большинство современных фотоаппаратов предназначено для съёмки на плёнках. В таких аппаратах матового стекла нет. Наводка на резкость достигается здесь с помощью шкалы расстояний, на которой обозначены расстояния от фотоаппарата до предмета (обычно в метрах). В зависимости от того, на каком расстоянии находится в каждом случае снимаемый предмет, объектив устанавливают на соответствующее деление шкалы. Но точно определить расстояние на глаз нелегко. Поэтому многие современные плёночные фотоаппараты снабжаются специальными дальномерами, соединёнными с объективом. С помощью дальномеров наводка на резкость достигается почти автоматически.

Резкость изображения предметов, находящихся ближе и дальше того предмета, по которому производилась наводка на резкость, увеличивается при уменьшении отверстия объектива. Для этого внутри объектива помещается диафрагма — приспособление, позволяющее уменьшать диаметр отверстия объектива.

Важной характеристикой объектива является его светосила. От неё зависит яркость светового изображения, получающегося на пластинке или плёнке, а от этого в свою очередь зависит и время, необходимое для фотосъёмки (выдержка). Чем больше светосила объектива, тем короче может быть выдержка. Объективами, обладающими высокой светосилой, можно фотографировать при слабом освещении, в сумерках или при свете небольшой электрической лампочки.

От чего же зависит светосила? Всем нам хорошо известно, что чем больше окно, тем светлее в комнате. С другой стороны, каждый знает, что чем дальше от окна находится предмет, тем слабее он освещён. Объектив в фотоаппарате представляет собой не что иное, как круглое окно, а пластинка (или плёнка) — предмет, который освещается светом, проходящим через это окно. Следовательно, светосила объектива зависит, во-первых, от диаметра его линз, а во-вторых, от того расстояния, на котором во время съёмки находится пластинка (это расстояние называется фокусным расстоянием).

Чем больше диаметр линз объектива и чем меньше его фокусное расстояние, тем ярче освещается пластинка, тем больше светосила объектива.

Высокая светочувствительность современных фотопластинок и плёнок и большая светосила фотографических объективов позволяют делать фотосъёмку за ничтожные доли секунды, фотографировать с малой выдержкой (фотосъёмку с очень малой выдержкой называют также моментальной фотосъёмкой).

Съёмка с выдержкой в 1/50 или 1/100 долю секунда — явление сейчас совершенно обычное. А нередко приходится снимать и с выдержками в 1/300, 1/500 и даже в 1/1000 долю секунды! Открыть объектив фотоаппарата на такие короткие промежутки времени без специального механизма невозможно.

Поэтому для получения таких коротких выдержек почти все современные фотоаппараты снабжены затворами. Они представляют собой довольно сложные, точно действующие механизмы, с помощью которых можно регулировать скорость выдержки в пределах от целых секунд до тысячных долей секунды. Существуют различные затворы. В одних механизм приводит в действие тонкие металлические створки, расположенные внутри объектива, между линзами. При нажиме на специальный спусковой рычажок эти створки быстро расходятся в стороны и открывают объектив, а затем так же быстро сходятся. Такие затворы называются центральными.

В других затворах вместо створок применяется светонепроницаемая шторка (обычно из чёрного прорезиненного шёлка) со щелью. Шторка расположена перед самой пластинкой или плёнкой. В момент съёмки шторка быстро пробегает перед пластинкой; при этом продолжительность выдержки регулируется шириной щели и скоростью движения шторки. Такие затворы называются шторно-щелевыми.

Наконец, в каждом фотоаппарате есть приспособление, с помощью которого аппарат можно точно направить на снимаемый объект. Это приспособление называется видоискателем. Простейший из них состоит из двух рамок: большой и маленькой (см. рис. 6). Большая рамка обычно расположена рядом с объективом, а маленькая сбоку, почти у задней стенки аппарата. Размеры этих рамок и расстояние между ними рассчитаны так, что если смотреть одним глазом со стороны задней (малой) рамки так, чтобы стороны обеих рамок совместились, то сквозь рамки будут видны те предметы, которые получатся на снимке.

Существуют также оптические видоискатели, в которых предметы видны уменьшёнными.

Вот те основные механизмы, без которых сейчас не обходится ни один фотоаппарат.

Нам не хватило бы места в этой книжке, чтобы дать хотя бы самое краткое описание всех существующих в настоящее время фотоаппаратов. Их слишком много. Если даже исключить из числа современных фотоаппаратов аппараты, имеющие специальное назначение (микросъёмка, аэрофотосъёмка и т. д.), то и среди обычных, наиболее распространённых фотоаппаратов можно насчитать сотни различных моделей, отличающихся по своему виду и по размерам.

Огромные фотоаппараты применяются в цинкографиях при изготовлении клише для полиграфической печати (об изготовлении клише подробно рассказывается дальше, стр. 52). Некоторые из этих аппаратов так велики, что о них может свободно усесться взрослый человек. Один из таких аппаратов показан на рисунке 7.

Рис. 7. В цинкографиях применяются огромные фотоаппараты.

Сравнительно большими и несложными по своему устройству аппаратами пользуются в портретных фотографиях (рис. 8).

Рис. 8. Фотоаппарат для портретной съёмки.

Но большинство выпускаемых сейчас советской промышленностью фотоаппаратов предназначается для фотокорреспондентов и фотолюбителей. Эти аппараты имеют небольшие размеры, обычно делаются складными и оснащены всевозможными приспособлениями, механизирующими работу аппарата.

На рисунке 9 показан фотоаппарат «Москва».

Рис. 9. Плёночный фотоаппарат «Москва».

Этот аппарат предназначен для съёмки на плёнке и даёт снимки размером 6x9 сантиметров. Плёнка для этого аппарата выпускается в виде ленты, намотанной на катушку. На каждой ленте умещается 8 снимков. Эти плёнки защищены от света чёрной бумажной полоской, и их можно закладывать в фотоаппарат на свету. Когда вся плёнка использована, её можно вынуть из аппарата и заменить другой также на свету.

Для начинающих фотолюбителей выпускается фотоаппарат «Комсомолец» (рис. 10).

Рис. 10. Плёночный фотоаппарат «Комсомолец».

Он имеет форму ящика и также рассчитан на плёнку, но снимки в нём получаются форматом 6x6 сантиметров, и на одной ленте их умещается не 8, а 12.

На рисунке 11 показан один из наиболее совершенных советских фотоаппаратов «ФЭД». Он выпускается заводом им. Ф. Э. Дзержинского.

Рис. 11. Фотоаппарат «ФЭД».

Этот аппарат легко умещается на ладони и свободно может быть спрятан в карман. Вместе с запасом плёнки на 36 снимков он весит всего 550 граммов.

Другой советский аппарат «Киев», выпущенный в 1948 году (рис. 12), так же невелик и лёгок, как «ФЭД».

Рис. 12. Прадед и «правнук». Фотоаппарат 1839 года и современный фотоаппарат «Киев».

Снимки, получаемые в этих двух аппаратах, имеют размеры всего навсего 2,4x3,6 сантиметра. Однако они настолько резки, что их можно увеличивать по площади в десятки раз без чувствительной потери резкости.

Как «ФЭД», так и «Киев» рассчитаны для съёмки на киноплёнке. В аппарат помещается отрезок плёнки длиной в 1,6 метра, свёрнутый в рулон. Плёнка занимает места не больше, чем катушка ниток, между тем на ней можно сделать 36 снимков.

Несмотря на малые размеры, аппараты «ФЭД» и «Киев» изготовлены с большой точностью и снабжены всеми новейшими приспособлениями. Так например, затвор фотоаппарата «ФЭД» работает со скоростью до 1/500 секунды, а у аппарата «Киев» — до 1/1250 доли секунды!

Фотографический аппарат — это основной прибор, применяемый в фотографии. От его качества и точности его работы в значительной мере зависит и качество фотографических снимков и возможность производить фотосъёмку в самых различных условиях.

Главной частью фотоаппарата является его объектив. Подобно тому, как художник, пользуясь красками или карандашом, изображает на полотне или на бумаге картины, объектив «рисует» на задней стенке фотоаппарата изображение предметов с помощью лучей света.

Как же возникает световое изображение в фотоаппарате? Чтобы понять это, необходимо сначала ознакомиться с некоторыми свойствами света.

Поделитесь на страничке

Следующая глава >

history.wikireading.ru

Пинхол часть 1 - "Фотографировать можно и банкой!"

Меня давно интересуют различные фотографические процессы и пинхол в частности, поэтому решила сделать с друзьями мастер-класс по этой теме. В процессе которого мы сделали из банок камеры и пофотографировали ими.

НЕМНОГО ИСТОРИИ

Что такое фотография?

фото - от др.-греч. фото/фотос - свет, граф - пишу. Так и есть, все что мы видим - это свет, отраженный от предметов. В фотографии свет(изображение), проходя через объектив попадает на светоулавливающий элемент(раньше пленка, а сейчас матрица).

Но как свет попадает в объектив? Это кажется совершенного логичным, поскольку наш глаз видит по тому же принципу.

Все замечали, что зрачки становятся больше в темноте и уменьшаются при ярком свете, подобно диафрагме? =D

Леонардо да Винчи в 16-ом столетии дал описание эффекта: "Когда изображения освещенных объектов проходят через маленькое круглое отверстие в очень темную комнату..., Вы будете видеть на бумаге все те объекты в их естественных формах и цветах"

 

 

Благодаря этому свойству света была изобретена революционная вещь, послужившая основой для создания фотоаппарата - камера обскура. 

Способность крошечного отверстия формировать изображение бала известна тысячи лет назад кочевым племенам Северной Африки, которые жили в палатках из кож животных. Крошечное отверстие в палатке проецировало изображение снаружи.

Камера обскура  (лат. camera obscūra «тёмная комната») - простейший вид устройства, позволяющего получать оптическое изображение объектов.

Наблюдать этот эффект, как делали древние философы и ученые, мы можем и в своей комнате. Для этого нужно затемнить комнату(заклеить окна светонепроницаемым полиэтиленом) и сделать небольшое кругое отверстие. И наслаждаться проекцией перевернутого вида из окна на своей стене. Очень красивую серию фотографий на эту тему сделал Абелардо Морелл:

 

 

Видео иллюстрирующие процсесс и сам эффект

</lj-embed>

Художники использовали камеру для правильной передачи перспективы, сначала как рисовальные "комнаты",позднее появилась портативные (и не очень) рисовальные камеры обскуры из дерева, с простейшим объективом для улучшения резкости, зеркальцем переворачивающим изображение,и стеклом, на которое клалась бумага. Такой большой видоискатель =)

Рисовальные камеры пользовались огромной популярность и их разновидностей существовало бесчисленное множество.Вот, панорама нарисованная по частям, с использованием камеры.

В прошлом обскура использовалась для изучения затмений. Иллюстрация камеры обскуры астронома Гемма Фрайзуса De Радио. Он использовал крошечное отверстие в затемненной комнате, чтобы изучить солнечное затмение 1544 года.

Этот же эффект можно наблюдать во время затмения в тенях от листвы деревьев и других предметов с отверстиями =D

Но вернемся к пинхолу. (англ. pin - иголка, hole - отверстие) Это простейший фотоаппарат без объектива и каких либо линз - что дает 2 преимущества - отсутствие искажения и бесконечную резкость. То есть нет возможности сфокусироваться и чем-то одном.

Есть несколько способов фотографированя - на пленку, сразу на бумагу или же сделать пихол из цифрового фотоаппарата.

СЪЕМКА СРАЗУ НА БУМАГУ

Я с друзьями остановилась на втором способе, поскольку он проще и интереснее.Что для этого нужно?СБОРКА ФОТОАППАРАТА1) банка - наш фотоаппарат. Есть много банок и от этого зависит сам результат. Если использовать коробку и расположить бумагу параллельно отверстию, кадр получится правильным по пропорциям, как он есть. Если же скручивать бумагу, использую круглые, конусообразные банки - изображение исказится.Такие пинхол камеры называются анаморфы.выбор банки сильно влияет на то, что в итоге получится. Влияет не только форма но и расстояние от отверстия до бумаги.

Итак, у нас было 2 таких банки-анаморфа (крайне удобные!) и две  без крышек, крышки пришлось делать.

--- Банка красится внутри черным, чтобы стенки не отражали свет. Проделывается отверстие около сантиметра либо в крышке, либо в стенке(в него затем вклеиться пластинка с более мелкой дыркой-объективом). Мы сделали отверстия сверху, посередине крышки. Так же отверстие может быть не одно, а несколько.

--- Теперь само отверстие для съемки. Примерный размер отверстия должен быть около 0,3 мм. Для него нужна очень тонкий кусочек металла. Чем тоньше,тем лучше будет качество снимка. Самое подходящее - снять металлическую фольгу с греющей свечки. Так же можно использовать более тонкую фольгу, главное суметь проделать в ней аккуратную дырку =Р

Точный оптимальный размер отверстия для каждой камеры вполне можно рассчитать по формуле, предложенной английским физиком и нобелевским лауреатом лордом Рейли (Rayleigh) в 1891 году. Она учитывает волновые свойства света и размеры камеры. По этой формуле до сих пор рассчитывают практически все пинхолисты мира.

D = K * √F * λ

D — диаметр отверстия,K — коэффициент = 1.9F — фокусное расстояние, в данном случае это расстояние от отверстия до пленкиλ - длина волны света = 0,00055

--- Вырезаем пластинку и аккуратно проделываем в ней отверстие тонкой иглой, прокручивающими движениями ровняем края отверстия(нужно добиться идеального круга), шлифуя выпирающие неровности мелкой шкуркой.

--- Как только все нас устраивает (пластинка гладкая, тонкая и отверстие аккуратное и ровное),можно приклеить наш "объектив" изнутри к банке.

--- Последнее это затвор. Можно придумать сложный затвор из системы картонок, а можно просто приклеить кучек бумаги на скотч. Главное чтобы закрывал дырку и удобно открывался,особо не сотрясая банку.

Готово! Снимать уже можно, но нужно иметь фотобумагу и химикаты для проявки + красное освещение.ПРОЯВКА

Бумага - мы взяли сильноконтрастную глянцевую бумагу, высушиваемую в домашних условиях.Химия - Проявитель и фиксаж Кодак (разбавляются по инструкции, многоразовые)Ванночки - 2 шт. + ванночка для промывки с проточной водой и окончательной промывки.Красная лампа - можно самостоятельно изготовить красный "абажур", можно купить красную лампочку, можно купить и покрасить простую лампочку. Главное чтобы цвет был теплый темно-красный.

Процесс проявки я рассматривать не буду, если интересно, то можно так же сделать отдельный пост.

СЪЕМКА

В темной комнате при красном свете(или в абсолютной темноте) вырезаем фотобумагу по форме банки и помещаем внутрь. Лучше предварительно вырезать из простой бумаги нужный размер под банку. В нашем случае бумага скручивалась и закрывала все стенки - это дало удивительный эффект панорамной бесконечности.

Закончив подготавливать банки, мы с ребятами пошли во двор и поставили экспонироваться их в разные места, какие показались нам достаточно интересными. Поскольку было пасмурно, нам пришлось оставить банки на 7-10 минут. (в основном повтыкали в сугробы Х) ) При солнечной погоде экспонирование может составлять меньше минуты. Но все это уже проверяется в процессе, поскольку зависит и от отверстия и от банки и от пейзажа. 

ссылка на программу по просчитыванию времени экспонирования, для искушенных фотолюбителей - pinhole.ru/index.php

И вот что вышло в итоге нашего мастер-класса-Снимки анаморфы (по сути являются панорамой, потому что если снимок скрутить в трубочку,как он был в банке при съемке - изображение будет бесконечным)

Снимки Антона -

Вики -Ани -

Изначально снимок проявляется в негативе, потом по желанию народ отсканировал и перевел в позитив. Пример позитива и негатива, что вышел у  Gremo -

установка банки -

в следующем посте вторая часть, про съемку на пленку - "фотоаппарат из бумаги своими руками"  

de8.livejournal.com

Фотографируем на бумагу! Солярография - Shtopor7

Хотите фотографировать на огромную матрицу в 40см или больше? А снимать с выдержкой в несколько месяцев? Думаете, что такая камера стоит миллионы? А вот и нет! Более того, нам даже и объектив не понадобится! Единственно что нам понадобится это "фотобумага".

Солярография - "Это удивительное сочетание аналоговой и цифровой техники получения изображения, позволяющее увидеть на снимке следы движения Солнца по небосклону в течение суток. Изобрели ее в 1999 году фотографы из Польши и Испании, поддерживающие в настоящее время сайт международного проекта solargraphy.com. Идея метода состоит в том, чтобы использовать сверх длинные выдержки, доходящие до полугода, например, от зимнего до летнего солнцестояния, когда склонение Солнца изменяется от минимального к максимальному. Более длинная экспозиция в данном случае не нужна, ибо солнечные треки начнут накладываться друг на друга. Минимальная выдержка — один день. Для получения изображения требуется безлинзовая фотокамера (ее еще называют «камера обскура», или «пинхол»). Роль оптической системы в этом случае выполняет прецизионное отверстие диаметром 0,2—0,5 миллиметра, а в качестве негатива используется традиционная черно-белая фотобумага. Камерой может служить любая светонепроницаемая емкость: жестяная банка, коробка, ведро. Импровизированный фотоаппарат направляют на Солнце и жестко фиксируют. В пинхол-камере Солнце отображается как почти точечный источник света. Длительная засветка фотоматериала приводит к тому, что соединения серебра начинают разлагаться непосредственно в камере на фотобумаге, и возникает видимое изображение, которое не требует дальнейшей обработки химикатами. Изображение, что любопытно, получается отчасти цветным. Это обусловлено оптическими свойствами коллоидных частиц серебра, возникающих в эмульсионном слое фотобумаги, причем разные ее сорта создают различные оттенки. Чем дольше выдержка, тем лучше видны детали объектов на снимке. Путь движения Солнца проявляется практически сразу, после 5—10 минут экспозиции. Заметим, что при традиционном методе фотографии светочувствительный материал к этому времени оказывается уже полностью засвечен. По окончании экспонирования негатив извлекается из камеры в затемненном помещении и сканируется. Теперь остается только преобразовать в какой-либо программе полученное цифровое изображение в позитив и сделать цветокоррекцию."...Источник http://www.vokrugsveta.ru/quiz/569/

1. Размер "матрицы" кадра ограничивается лишь размером бумаги, а если склеить вместе несколько листов можно получить огромедный кадр.

Для начала я сделал несколько камер "обскура" разных размеров: от баночек из под пленки, чипсов, и самодельную из жестянки. В каждой камере с боку проделал мельчайшее отверстие - это и будет объективом!Во внутрь я поместил свернутую чб фотобумагу.(при свете красного фонаря) Экспериментировал и с цветной, но результат получился хуже чем с чб. После "проявки" чб бумаги изображение становится немного цветным)Проявка заключается в инвертировании изображения в фотошопе.Принцип работы такой камеры прост: Свет через отверстие- объектив проецирует изображение на фотобумагу, которая засвечивается, фиксируя картинку.

Камеры после эксперимента

Собственно результат:

2. Первые две камеры я примотал на крыше заброшенного завода, выдержка кадров 496 часов (20 дней 16 часов) размер бумаги 8х4см

3.

4. Закрепил на опоре ЛЭП. Размер кадра 8х4см, 2694 часов (112дней)Кстати много зависит и от сканера, вот 2 варианта с разных машин

5. А эту я закрепил на заборе завода и замаскировал сухими ветками. Даже и не верил, что никто из любопытства её не снимет! Выдержка 1631 часов (68 дней) размер бумаги 8х4см. Так же 2 версии с разных сканеров

6. 8х4см, 2811часов (117 дней)

7. 20х9см, выдержка 2664 часов (111 дней)

8. Не все камеры доживают...На камеру из под чипсов я возлагал большие надежды,но увы из-за сырости и морозов она деформировалась, сильно сместив фотографию внутри.

9. Ещё одна камера павшая в бою.. с пернатыми(

10. Мой самый большой кадр 40 на 30 см! К сожалению из за огромного размера он не хотел влезать в сканер, сминаясь и загибаясь.С первой попытки со сканировать не получилось. А каждая последующая попытка только сильнее засвечивала бумагу.Проблема в том, что чем сильнее засветится бумага, тем хуже будет детализация(((Пример наполовину сканированного кадра. Можно заметить резкий кадр на белом негативе и засвеченную мутную часть после сканирования(

11. Этот же кадр. "Северное сияние" получилось из-за плохого прилегания к сканеру, а линии - косяки сканера. Размер кадра 40х30см, 2664 часов (111дней)

12. Этот же кадр, но с другого сканера

---Подытожим:

1)Солярография очень необычный вид фотографии, где интересен не только результат, но и сам процесс (Сделать камеру, придумать куда её закрепить, просчитать траекторию солнца...)2)Камера из принглса выходит плохая(3)Огромные кадры очень проблематично сканировать, да и крепить полметровую камеру не везде удобно(4)Лучше не высоко закреплять камеру, (как практически везде делал я) а наоборот! Пример ЛЭП)5)Мне понравился эксперимент и я обязательно расставлю ещё партию камер по городу) Возможно даже засниму портрет:)) А что, Ленин практически в каждом городе стоит, чем не модель?)))

shtopor7.livejournal.com

Лентикулярная технология - завораживает и потрясает воображение.

Представьте себе людей, которые вытягивают шею, только для того, чтобы разглядеть рекламный плакат, а потом советуют своим родственникам и друзьям пойти посмотреть на него. Они, не отрывая взгляда от изображения, подходят ближе и отступают назад, переходят то вправо, то влево, и просто делают все возможное, чтобы рассмотреть изображение со всех сторон. Не говоря уже о том, что в результате они тратят целую вечность на изучение рекламы: Думаете это самая дикая фантазия творца, который просыпается в холодном поту, расстроенный тем, что это был всего лишь сон? Не совсем так. Это реальность. Эта реальность называется лентикулярная технология или лентикулярная фотография, которую некоторые называют 3D (трехмерной) печатью. При помощи этой технологии можно производить плакаты, сити-лайты, P.O.S., календари и прочую рекламную продукцию, эффект от которой значительно выше, чем при использовании обычной печати.

Лентикулярный – означает линзообразный. Лентикулярная технология – это не новинка. Впервые принцип получения объемного изображения был представлен всеобщему вниманию Габриэлем Липпмаом в 1908 году. (Кстати, в том же году Габриэль Ионас Липпман (1845-1921) получил Нобелевскую премию в области физики за изобретение метода получения цветной фотографии с помощью интерференции в толстых слоях светочувствительной эмульсии). Существенный вклад в развитие идеи Габриэля Липпмана сделан французским изобретателем Морисом Бонне, который впервые продемонстрировал качественную трехмерную фотографию.Состоит лентикулярная картинка из двух частей: полимерная пластина – это набор мелких цилиндрических линз (растр линз) и приклеенный к ней с тыльной стороны цветной отпечаток, представляющий собой картинку, составленную из последовательности полос. Изображение каждой полосы отклоняется микролинзой под определенным углом так, что в левый и правый глаз попадают полосы от разных картинок.

Совокупность всех полос от каждой линзы, попадающих в правый и левый глаз наблюдателя образуют целую картину, причем для левого глаза – это одна картина, а для правого другая. Мы видим либо стереоизображение, либо меняющиеся с углом поворота кадры. Такие изображения, которые изменяются в зависимости от угла зрения, обычно называют анимаграфикой или вариоизображением. Принцип создания стереоизображений, начиная от его изобретения, благодаря усовершенствованию технологии печати, через несколько десятков лет вырос в форму современного рекламной печатной индустрии с ее, потрясающим воплощением. В 60-х годах несколько японских и американских фирм сумели совершить технологический прыжок в производстве так называемых линзовых растров, заполнив мир стереокартинками, стереокалендарями, открытками и прочей массовой печатной продукцией.

 

Сначала была фотокамера

 

Развитие технологии лентикулярной фотографии прошло рад этапов от стереокартинок, которые можно было рассматривать без специальных приспособлений до анимационных шедевров размером 3х7м. За сравнительно короткий срок технология мигающих открыток превратилась в отдельную отрасль, связанную с непосредственным процессом фотографирования, цветной фотопечати и размножения. Фотопроцесс заключался в том, что на противоположную сторону лентикулярной пластины наносился фоточувствительный слой, на который, при помощи оптических призм, проецировались два рисунка, разложенных на составные части в виде полосок. После проявления изображения воспроизводился требуемый эффект. Фотографический метод первым отвечал техническим требованиям, выставляемым к более сложным изображениям. Для этого метода требовалось специальное оборудование – устройства, выполняющие функцию пространственно-разнесенного проецирования изображений на носитель с различных углов. Французский изобретатель Морис Бонне первым сконструировал специальный фотоаппарат для стереосъемки, который создавал уже готовое полосовое изображение. Этим фотоаппаратом снимались виды Парижа. Фотоаппараты подобной конструкции используются и сейчас.

Хотя производство с применением такой технологии сначала было тяжелым и дорогим, но все же постепенно оно было усовершенствовано и автоматизировано. Настоящий прогресс в этой технологии произошел в середине 1990-х годов, в период значительного усовершенствования цифровых технологий, используемых в препринте (предварительной подготовке печати). Использование компьютеров при обработке изображений для подслоев, так и в сфере технологий производства печатных матричных форм. В прошлом компании, специализировавшиеся в сфере лентикулярной фотографии, с появлением передовых цифровых технологий приобрели второе дыхание. Сегодня лентикулярную продукцию можно производить с помощью офсетов, флексографической, цифровой струйной печати и даже шелкотрафаретов, выбор зависит от размера площади печати, параметров визуализируемых стендов и количества изготовляемых копий. Изначально производство было организовано в США и Японии, откуда технология постепенно распространилась в Европу.

Ваpио/стерео изображения в рекламе обладают повышенной эффективностью за счет более высокой степени привлечения внимания, фиксации на объекте рекламы, запоминания и передачи информации, большего времени рекламного контакта, нежели традиционные рекламные носители.

 

Как создаются оптические эффекты

 

Динамичные варио-эффекты довольно разнообразны: мигание (две или более сменяющих одна другую картинки), движение объекта или его частей, изменение масштаба (приближение и отдаление изображения), морф (постепенное превращение одного рисунка в другой), 3D эффект или объемное изображение. Также можно совмещать индивидуальные возможности каждого из этих эффектов.

Физический принцип, на котором основаны лентикулярные изображения, относится к оптическим свойствам человеческого глаза. Основой технологии является использование прозрачной пластиковой пленки или пластины с растром цилиндрических линз, расположенных одна возле другой. Их фокусное расстояние зависит от толщины пленки и выбирается в зависимости от расстояния до наблюдателя или от угла обзора. Наблюдатель видит изображение, которое напечатано или прикреплено к обратной стороне пластины. Благодаря увеличительным свойствам линз изображение увеличивается и направляется прямо в глаза, причем для каждого глаза отдельное изображение. Это достигается за счет того, что лучи направляются в глаза из разных точек изображения под разными углами. Поэтому каждым глазом можно увидеть различные рисунки. Этот метод используется для последовательного воспроизведения серии картинок. Затем, при движении изображения или перемещении наблюдателя относительно него возникает эффект превращения одного рисунка в другой.

Аналогично можно достичь пространственного восприятия изображения. Хотя в этом случае необходимо сделать так, чтобы различные изображения, проектирующие картинку под разными углами, соединялись в глазах наблюдателя. Наблюдатель воспринимает стереоскопический эффект без необходимости перемещения. Безусловно, изображение должно быть приспособлено к печати. Существенное значение имеет разрешающая способность цветной печати.

Аналогично можно достичь пространственного восприятия изображения. Хотя в этом случае необходимо сделать так, чтобы различные изображения, проектирующие картинку под разными углами, соединялись в глазах наблюдателя. Наблюдатель воспринимает стереоскопический эффект без необходимости перемещения. Безусловно, изображение должно быть приспособлено к печати. Существенное значение имеет разрешающая способность цветной печати.

Самым простым способом подготовки является применение эффекта мигания (например, смена одного изображения другим), для которого необходимо иметь две картинки. Картинки разрезаются на полосы толщиной в период растра, затем располагаются друг за другом, чередуясь одна из 1-й картинки одна из 2-й. Нужно помнить, что линзы переворачивают изображение, поэтому каждую полосу нужно зеркально отразить по горизонтали. И, наконец, получив сложенное таким образом двойное изображение нужно его сжать в два раза, чтобы две полосы умещались под одной линзой. Без лентикулярного растра на нем трудно что-либо разглядеть, но стоит совместить период растра с периодом картинок и выровнять их по вертикали, как картина приобретет четкость или даже превращается в объемное изображение, если картинки были предварительно подготовлены для этого.

По данным аналитических маркетинговых исследований компаний Product Acceptance and Research Inc (USA), эффект вариоизображения, который используется в рекламе, срабатывает в 6,5 раз чаще, чем в случае традиционных средств.

Что касается имитации движения, то оно складывается из отдельных картинок. Для этого требуется многоракурсовая съемка, т.е. фотографирование объекта под несколькими различными углами обзора. Двухракурсовая стереосъемка (стереопара) всегда подразумевает создание отдельных изображений для левого и правого глаза со стереобазой 65 мм (это среднее расстояние между глазами человека). Для многоракурсовой фотосъемки мы должны определить величину стереобазы и количество ракурсов, которое соответствует количеству вариокадров.

Можно снимать так, что два соседних ракурса представляли собой стереопару, не два крайних – первый и последний, а два соседних. Таким образом, мы получим несколько стереопар, переходящих друг в друга по цепочке. Создав из них стереоизображение, мы сможем оглядывать предмет с разных сторон. Можно создать и промежуточные дополнительные ракурсы между этими стереопарами, чтобы получить непрерывный поворот. Максимальное количество всех ракурсов будет определяться периодом растра и разрешением печатного устройства.

Аналогичный принцип создания эффекта увеличения, когда изображение предмета “приближается” издалека до близкого расстояния, так же как эффект морф – превращение принцессы в лягушку, или черного автомобиля Трабант – в сияющий Ролс-Ройс .

Есть несколько способов создания объемного эффекта. Например, фотографированием реального изображения с различных ракурсов или с помощью компьютерной графики, моделирующей изображения в программе CAD 3D. При рассмотрении законченной картинки, возникает впечатление, что объект вращается. Однако фотографирование из нескольких углов означает сохранение идентичных условий, из которых лучшими являются условия студии, или может быть специально приспособленная направляющая рейка, по которой перемещается камера. Условия для съемок на улице нельзя назвать абсолютно удобными, достаточно сказать об исчезновении солнца: На практике часто используется другой метод, основывающийся на специфике человеческого восприятия. Это компьютерный способ создания изображений – “3D печать”, который создает имитацию объема или глубины пространства. Он основывается на стереоскопии человеческого зрения. Оба глаза видят обозреваемый объект под различными углами. Получающееся изображение затем в мозгу соединяется в одно пространственное изображение. Намного проще осуществлять подготовку подслоев при использовании компьютерных программ для создания изображений и использовать обычные методы печати. Отдельно создаются стереопары или пары картин для левого и правого глаза. Лентикулярная пленка помогает каждому глазу увидеть только “свой” рисунок, в то время как мозг послушно создает объемное изображение. Благодаря развитию технологий, появились другие возможности подготовки подслоев для создания 3D эффекта. Используя подходящее программное обеспечение и имея небольшой опыт и необходимое творческое мышление, можно создать красивую трехмерную картину из практически любого двухмерного оригинала. Достаточно разбить детали изображения на слои и затем компоновать их по-новому, смещая друг относительно друга, имитируя объем и глубину. Поэтому можно буквально оживить обыкновенную фотографию, придав ей глубину, а картины художников эпохи ренессанса превратить в шедевры, которые еще никто не видел.

Варио-картина – это картинка с изменяющимся изображением при незначительном покачивании из стороны в сторону, так чтобы угол обзора менялся. Тогда танцор будет танцевать или улыбка на лице превратится в нахмуренность. Оба глаза видят только пару картин при одном угле. При другом угле видна другая пара картин.

Для создания других эффектов подслой с изображением должен содержать полную последовательность картинок. Необходимо специальное программное обеспечение, которое совмещает картинки в один печатный растр, формируемый из тонких полосок, ширина которых соответствует диаметру линзы. Лишь после того, как отпечатанная картинка была покрыта лентикулярной пленкой, происходит настоящее волшебство: перед глазами возникает трехмерное или анимационное изображение. Для лентикулярной фотографии чаще всего используют программное обеспечение, которое включает в себя Multiview 3D Flip!, Flip Universal, Super 3D Genius, Merge Software, FlashBand Generator Pro, Magic Interlacer Pro 100 или пpогpамма “Ваpиогpаф 3.31”, разработанная Томским центром СИТЦ “Пpогpесс”. Несмотря на то, что при помощи программы Photoshop опытные специалисты могут производить все от А до Я, с использованием “скриптов” можно автоматически выполнять различные задания.

 

Растровые цилиндрические линзы

 

Лентикулярные пленки и пластины производятся на каландре с выемками, который создает давление на поверхности листа, создавая цилиндрические линзы, которые формируются в параллельные волнообразные ряды вдоль пленки. Фокусное расстояние каждого ряда определяется толщиной пленки. После горячего процесса формовки материал затвердевает и затем пленки разрезаются на специальные размеры. Современная технология дает возможность производить гибкие пленочные или твердые листы различного разрешения, т.е. с разной плотностью линз и из различных материалов. Пластики – PVC, PETG и PET – это первостепенные материалы. Чаще всего используется PET из-за того, что он более технологичен и безвреден. PET и PETG гораздо стабильнее под давлением и “зрительно” они гораздо лучше пластика PVC, который имеет легкую дымчатость. Для применения листов большого формата обычно используют акриловый или поликарбонатный пластик.

Обязательным условием является бесцветность, чистота и прозрачность пленки. Линейная плотность линзового растра, как правило, колеблется в пределах от 10 до 100, бывает 160 строк на дюйм, и даже 200, а толщина пленки может изменяться от 100 микрон (160 строк на дюйм) до 5 мм (10 строк на дюйм).

Лентикулярные листы характеризуются тремя основными параметрами. Первый – это плотность линзового растра. Пленки с большей плотностью, т.е. с более мелким растром, эффективнее всего использовать при производстве почтовых открыток, в то время как твердые лентикулярные листы с меньшим показателем “строка на дюйм” выгоднее применять для больших плакатов, которые рассматриваются издалека. Второй фактор – угол обзора, который определяется фокусным расстоянием цилиндрических линз и толщиной лентикулярной пленки. Меньший угол рассмотрения удобен при создании эффектов типа 3Д, больший угол – для создания прыгающего эффекта. Третий фактор – это толщина листа. Эти три фактора определяют область применения и качество получаемых изображений. Кроме того, имеется и ограничения, исходящие из чистой оптики, например, невозможно производить лентикулярную пленку с растром 50 строк на дюйм, которая в то же время будет иметь толщину в несколько микрон. Количество рисунков, которые используются последовательно в анимации, определяют то, какой тип линзового растра следует выбирать для наблюдения с определенного расстояния.

 

Волшебство препринта

 

Весь процесс получения стерео- или варио-изображения довольно прост: получение набора графических изображений, компьютерная обработка с помощью специального программного обеспечения – создание кодированного изображения, распечатка этого изображения на принтере и соединение его с линзовым растром.

Весь процесс получения стерео- или варио-изображения довольно прост: получение набора графических изображений, компьютерная обработка с помощью специального программного обеспечения – создание кодированного изображения, распечатка этого изображения на принтере и соединение его с линзовым растром.

Подготовка к печати в этом процессе определяет качество конечного продукта. Пока разрешение для цветной печати не превышало 300 точек на дюйм, использовались специальные методы цветной фотографии. Экспонирование фотобумаги производилось через наложенный растр с помощью двух объективов, расположенных на расстоянии 65 см. Этот процесс был хорошо отработан для стереокартинок и применялся много лет. Но как только потребовалась анимация, то требовалось увеличивать количество пар объективов, а их габаритные размеры – должны были уменьшаться. Компьютерная обработка и усовершенствованная печать помогли избавиться от этих проблем. В качестве основного подслоя для лентикулярного изображения выбирают как минимум два цветных рисунка (эффект мигания), последовательность может состоять из 20 и больше рисунков (эффекты движения, морфа, изменения масштаба). Чаще всего количество рисунков находится в диапазоне от 6 до 16. Фотографии не должны быть очень контрастными, но и не должны быть сильно темными, неконтрастными. Множество деталей изменения изображения могут сказываться на окончательной печати, и иметь негативное влияние – они могут искажать изображение. Идеальным вариантом является получение исходных рисунков в графическом формате .eps, так как их можно растрировать в необходимом для дальнейшей обработки разрешении. Исходные рисунки должны иметь боле высокое разрешение по сравнению с самой качественной печатью, так как линзовый растр увеличивает изображение в 10 раз и больше. Требуемый уровень печати на сегодняшний день не является проблемой и принтеры с разрешением более 600 точек на дюйм вполне подходят для несложных стерео- и вариоизображений для формата почтовых открыток. Более важным фактором, чем разрешение исходных картинок, является их четкость и сбалансированность цветов. Всякая зернистость, рассеянное изображение и размытость границ картинок, как в формате .jpg, оказывают негативное влияние на результат, в особенности в случае эффекта 3D. Разделение изображений на полосы и их последующая сборка тоже имеют свои особенности, так как незначительное наложение одной полосы на другую дает суммарный эффект совмещения и эта часть изображения проявляется как линейный дефект вдоль всего изображения. По мере повышения требований к качеству изображений, количество изображений должно увеличиваться. Даже для простой стереофотографии требуется в несколько раз больше изображений, для того, чтобы зритель не выбирал точный угол наблюдения, а смог сразу увидеть объемный эффект, с какого бы угла не смотрел. Из этого следует, процесс препринта становится все более сложным и трудоемким. Без специального программного обеспечения становится все труднее подготавливать кодированные печатные формы высокого качества, когда требуется многокадровая анимация. Еще одной особенностью этого процесса является проверка готовой печатной формы. На практике отпечатанное изображение подкладывают под лентикулярную пленку или пластину, совмещают и любуются. А если размеры, скажем 2 на 3 метра, то печать и одно только совмещение займут не один час. Если появляется какой-нибудь дефект или нарушение, то исправить отпечаток ретушью практически невозможно. Поэтому для создания сложных эффектов анимации на больших площадях требуется обратное преобразование – получение готовой анимационной картины на экране дисплея из полученного кодированного изображения. Практика подтверждает, что препринт – трудный процесс, требующий предельной точности оператора, так как даже самая малая неточность оказывает очень существенное влияние на результат.

 

Цветная печать

 

К основным методам печати для этой цели относятся цифровая и офсетная печать, которые могут ограничиваться меньшим форматом. Трафаретная печать может также использоваться при разрешении до 20 лин/дюйм. Обычно офсетная печать используется прямо на обратной стороне лентикулярной пленки для формата В2 (52х74), в то время как более крупные форматы совмещаются из нескольких листов В2. Основное требование – строгая параллельность печати и точная ориентация пленочного лентикулярного растра. Во всем мире почти 90% продукции печатается непосредственно на лентикулярной пленке, с последующим покрытием белой непрозрачной краской для увеличения цветового контраста и защиты. Прикрепление лентикулярной пленки к рисунку, отпечатанного на бумаге или другой пленке не выполняется прямым способом, а с помощью двусторонней клеящей пленки. Все материалы пленок должны быть предельно чистыми для того, чтобы никакие нежелательные визуальные эффекты не возникали из-за крупинок, пыли или волосков. При использовании в помещениях, изображение печатается на бумаге. При внешнем использовании изображение печатается на белых или прозрачных полипропиленовых (полиэстеровых) пленках. Лимитирующим фактором является растворимость подслоя во время склейки. На качество также оказывает влияние температура воздуха и влажность в производственном помещении. Как в случае препринта, так и в случае печати персонал работает с сотыми долями миллиметра, вывод цифровой цветопробы или пробная печать фрагмента изображения на лентикулярной пленке требует проведения тестов и тщательной подстройки оборудования. Печать более чем с четырьмя цветами используется в исключительных случаях. При печати непосредственно на обратной стороне лентикулярного листа, используется только четырехцветная печать с визуальным контролем 3D эффекта, после печати. После сушки краски на него с обратной стороны наносятся три или четыре слоя белой защитной краски. После высушивания можно продолжить одноцветную или цветную печать на обратной стороне полученного белого слоя при изготовлении визитных, банковских карточек, поздравительных открыток и т.д. с последующим высеканием. Иногда покрывают обратную сторону защитной эмалью, а также можно наклеивать на нее защитную пленку.

 

 

От телефонных карточек до больших рекламных плакатов

 

Лентикулярная фотография находит свое применение везде, где требуется привлечь внимание зрителя, от визитных карточек, больших рекламных панелей до применения в текстильной отрасли. В США ее используют даже для обучающих целей для студентов медиков.

Есть коллекционеры, собирающие только специальную серию предметов всех типов, клубных и дисконтных карточек, телефонных карточек, визитных карточек, почтовых и поздравительных открыток, коробок для CD и DVD, маленьких рекламных предметов и сувениров (брелков для ключей, этикетки, бирки для дорогих текстильных изделий, ежедневник, линейки), коврики для мышки, рекламные постеры и товарные стойки возле кассовых терминалов. Все чаще лентикулярная или 3D-печать используется для рекламных постеров с подсветкой или больших рекламных панелей. Декоративные подарочные коробки со стереоскопическими или вариоизображениями стало теперь модной тенденций.

Хотя несколько лет назад считали, исходя из финансовых и технических ограничений, что эта технология, определенно не вовлечена в крупносерийное производство из-за цены. Например, кредитные, дисконтные и телефонные карточки формата 85×53.5 мм окупаются, начиная с их производства, примерно в количестве от 5000 шт. Другое ограничение было связано со сложностью выравнивания площади и поддержание совершенно ровного подслоя при печати на рулонные материалы.

Изгибание пленки может в результате дать деформацию угла обзора и таким образом исчезнет стерео- или варио-эффект. Однако эти трудности частично преодолены. В основном маленькие лентикулярные форматы заказываются богатыми клиентами или компаниями, которые могут себе позволить наклейки на массовую продукцию парфюмерии, телекоммуникационных устройств, защищенных банковских карточек и т.д. Например, при тираже от 1000 и больше визиток с лентикулярной пленкой, американские специалисты оценивают их продажную стоимость примерно в 1 $ за штуку. Лентикулярная реклама на больших щитах используется крупными компаниями, например сетью Мак-Дональдс или Фольцваген.

Рекламный биллборд компании BIG3D размером 365 х 730 см, который меняется в зависимости от угла осмотра.

До сегодняшнего дня в странах Центральной и Восточной Европы лентикулярная технология является новинкой, чаще всего работы ведутся с форматами А4. Хотя, рекламисты давно осознают, что волшебство, которое при дневном освещении может заставить нереальные вещи двигаться и может вылить свои чары на прохожих, оправдает затраты. Вот почему медленно, но уверенно лентикулярные вывески и плакаты становятся новым видом внешней рекламы. Эта технология пока еще не доступна широкой публике из-за стоимости, но, оценивая эффективность, некоторые все же идут на дополнительные расходы. Изображения торговых марок, изготовленные с применением этой технологии, могут неизгладимо отпечататься в нашей памяти. Вопрос о том, когда эта технология появится в нашем регионе, является вопросом наличия необходимых материальных средств. Все исходные продукты для создания лентикулярной рекламы на Украинском рынке есть. И немаловажный факт состоит в том, что лентикулярные пленки, поставляемые компанией Аверс НТ, уже пошли в ход. Так, что со дня на день можно ожидать, что лентикулярная реклама со стерео- и варио-изображениями на рекламных плакатах появится на улицах наших городов.

 

 

 

Поделиться "Лентикулярная технология – завораживает и потрясает воображение."

filotaimist.ru

ФОТОГРАФИЯ - это... Что такое ФОТОГРАФИЯ?

  • фотография — и, ж. photographie f. 1. Получение изображения кого , чего л. на светочувствительных материалах с помощью оптического аппарата под действием световых лучей. БАС 1. Фотография это прекрасное изображение, посредством которого каждый из нас может… …   Исторический словарь галлицизмов русского языка

  • Фотография — Наиболее распространенный ныне тип визуального изображения, основанный на технике репродуцирования. Возникновение Ф. связывают с именами француза Жозефа Нисефора Ньепса (1765 1833) и парижского диорамиста Луи Жак Манде Дагера (1787 1851). Если… …   Энциклопедия культурологии

  • ФОТОГРАФИЯ — ФОТОГРАФИЯ. 1) Способ получения изображений посредством света на светочувствительных материалах. 2) Фотографический снимок. Фотография изобретена в 1839 году. Она разделяется на чёрно белую и цветную. Изображение на снимках чёрно белой фотографии …   Краткая энциклопедия домашнего хозяйства

  • ФОТОГРАФИЯ — (греч. светопись) представляет механизированный способ получения изображений при помощи специального аппарата на светочувствительных поверхностях. Фотографический аппарат в своей схеме представляет камеру обскуру вычерненную внутри коробку, на… …   Большая медицинская энциклопедия

  • фотография — снимок, фотоснимок, фото, фотокарточка, карточка; мурло, моська, харя, позитив, рожа, сепия, фотоизображение, фотосалон, фотопортрет, лицо, физиономия, фотоателье, личность, хрюкало, ряха, фоторобот, фотка, термофотография, фотомордочка,… …   Словарь синонимов

  • ФОТОГРАФИЯ — ФОТОГРАФИЯ, фотографии, жен. (от греч. phos свет и grapho пишу). 1. только ед. Получение изображений предметов с помощью оптического аппарата (камеры) на светочувствительных пластинках. «В последнее время он пристрастился к фотографии.»… …   Толковый словарь Ушакова

  • ФОТОГРАФИЯ — Если вы выглядите как ваше фото на загранпаспорте, вам, вероятно, необходимо отдохнуть за границей. Видоизмененный Эрл Уилсон Некоторые лица на негативе выглядят позитивнее. Доминик Опольский В наше время все существует ради того, чтобы… …   Сводная энциклопедия афоризмов

  • ФОТОГРАФИЯ — совокупность методов получения стабильных во времени изображений предметов на свето чувствит. слоях (СЧС) путём закрепления фотохим. или фотофиз. изменений, возникающих в СЧС под действием излучения, испускаемого или отражаемого объектом.… …   Физическая энциклопедия

  • Фотография 51 — Фотография 51  рентгенограмма волокон натриевой соли тимусной ДНК в B форме, полученная Розалин Франклин (англ. Rosalind Elsie Franklin) в 1952.[1][2][3] Эта рентгенограмма послужила главным толчком к открытию двуспиральности ДНК… …   Википедия

  • фотография —     ФОТОГРАФИЯ, карточка, снимок, фотоотпечаток, фотоснимок, спец. позитив, разг. отпечаток, разг., пренебр. фотка, разг. фото, разг. фотокарточка, разг., шутл. фотомордочка …   Словарь-тезаурус синонимов русской речи

  • dic.academic.ru

    1. Зарождение фотографии. Фотография

    1. Зарождение фотографии

    В основе фотографии лежат два явления. Первое из них заключается в том, что с помощью увеличительного стекла — лупы — можно получить на плоской поверхности, например на листе белой бумаги, световое изображение окружающих нас предметов. В основе второго явления лежит способность света оказывать на некоторые вещества такое воздействие, при котором изменяется состав вещества (такие вещества называются светочувствительными).

    Не следует думать, что фотография была открыта внезапно. Изобретение фотографии является результатом труда многих деятелей науки на протяжении нескольких поколений.

    Свойство увеличительного стекла — лупы — давать изображения предметов стало известно людям ещё в XVI веке. Так, в одной из книг, написанной ещё в 1570 году, описан способ получения изображения с помощью такого стекла: «Надлежит закрыть все окна так, чтобы не оставалось ни одной щели, через которую мог бы проникнуть свет. Но в одной из ставней надо сделать круглое отверстие в мизинец диаметром и у отверстия поместить чечевицеобразное стекло. Если против стекла повесить бумагу или белое полотно, то все предметы, освещённые солнцем, какие находятся и движутся на улице, представятся на полотне, как антиподы (вверх ногами), и что с правой стороны, то налево… Увидишь и лица проходящих людей, платья, цвета, движения — всё как будто происходит вблизи. Зрелище так приятно, что нельзя надивиться».

    Этот опыт может проделать каждый из наших читателей, вооружившись лупой и листом бумаги. Можно не закрывать ставен в комнате. Достаточно отойти вглубь комнаты, подальше от окна, и, взяв в одну руку лупу, а в другую лист бумаги, расположить их так, чтобы свет из окна падал сквозь лупу на бумагу. При определённом расстоянии между бумагой и лупой на бумаге появится достаточно хорошо видимое уменьшённое и перевёрнутое изображение окна и предметов, расположенных на подоконнике и за окном, на улице.

    Этим свойством увеличительного стекла в первую очередь воспользовались художники. Получая с помощью лупы изображение на бумаге, они обводили очертания изображения карандашом и пользовались этими зарисовками для своих картин. Появился даже специальный прибор, так называемая камерa-обскура, что означает— тёмная коробка. Это — ящик, в передней стенке которого укреплялась лупа, а в заднюю стенку вставлялась рамка с листом полупрозрачной бумаги.

    Так как обводить перевёрнутое изображение было неудобно, камеру-обскуру в дальнейшем усовершенствовали. Внутрь ящика стали помещать плоское наклонное зеркало. Зеркало направляло лучи света, идущие от лупы, на крышку ящика и «перевёртывало» изображение (рис. 1).

    Рис. 1. Предок современного фотоаппарата — камера-обскура.

    Как мы увидим дальше, принцип устройства камеры-обскуры полностью сохранился до наших дней и используется в современных фотоаппаратах.

    Таким образом способ получения светового (но только светового) изображения предметов был найден ещё в середине XVI века. Тогда же возникла мысль «поймать» это изображение, запечатлеть его, не пользуясь карандашом или красками.

    Необходимо было пропитать или покрыть бумагу таким веществом, которое изменялось бы под действием света. Тогда лучи света оставят на бумаге изображение предмета. Но такое вещество долго не удавалось найти.

    Между тем многие происходящие в природе явления убеждали людей в том, что вещества, чувствительные к свету, существуют. Так, например, было замечено, что от длительного действия света выцветают в комнате обои, «выгорают» ткани.

    Наблюдая за подобными явлениями, учёные пытались использовать их для улавливания изображения, получавшегося в камере-обскуре. Было перепробовано множество самых различных веществ.

    Уже в XVI веке для этой цели было применено химическое соединение — хлористое серебро, которое обладало свойством сравнительно быстро темнеть под действием света. Позднее такое же свойство было обнаружено и у других соединений серебра, например у йодистого и азотнокислого серебра. Этими веществами стали пропитывать бумагу, чтобы запечатлеть на ней изображение в камере-обскуре. Однако такие попытки не давали желаемых результатов. Бумага темнела сравнительно быстро только под прямыми лучами солнца, но для того, чтобы получить хотя бы слабое изображение в камере-обскуре, требовалось много часов.

    Так обстояло дело на протяжении почти трёх столетий. Лишь в начале XIX века было обнаружено, что кратковременное действие света на некоторые светочувствительные вещества может быть усилено последующей химической обработкой этих веществ. Иными словами, слабое, едва заметное и даже совсем незаметное изображение, которое образуется под действием света на бумаге или пластинке, покрытой светочувствительным веществом, можно усилить во много раз и сделать хорошо видимым с помощью других веществ. Это и было началом фотографии.

    Так камера-обскура превратилась в фотоаппарат, с помощью которого 110 лет назад были получены первые фотографические снимки.

    В качестве светочувствительного вещества было применено йодистое серебро. Для получения этого вещества зеркально отполированные серебряные пластинки помещали в ящик, на дне которого в открытой чашке находился иод. Под действием паров йода на поверхности пластинки постепенно образовывался тонкий слой светочувствительного йодистого серебра.

    Съёмка на таких пластинках продолжалась 3–4 минуты, после чего пластинку уже в темноте или при очень слабом освещении переносили в закрытый ящик и помещали над блюдцем со ртутью.

    Здесь пластинку оставляли на несколько часов. Под действием паров ртути на тех участках пластинки, на которые действовал свет, образовывалась так называемая амальгама (раствор серебра в ртути) белого цвета. С остальной поверхности пластинки йодистое серебро удаляли, обнажая её зеркальную поверхность.

    Полученный таким образом снимок был зеркальноотражённым, то-есть предметы, находившиеся справа, на снимке получались слева, и наоборот. Рассматривать его надо было под некоторым углом к свету: тогда серебряные места казались тёмными, а места, покрытые белой амальгамой, светлыми.

    Так впервые были получены фотографические снимки. Качество их было невысоким, и стоили они очень дорого. Однако сходство с натурой было так велико, а способ получения снимков так прост, что фотография с необычайной быстротой распространилась по всему миру.

    Человек, который хотел получить свой портрет, должен был просидеть перед аппаратом под лучами солнца несколько минут. Чтобы снимающийся не сдвинулся с места, под голову его подставляли приспособление, напоминающее ухват! Чтобы усилить отражение солнечных лучей, лицо и руки посыпали белой пудрой.

    В 1839 году первый русский фотограф С. Л. Левицкий сделал в Петербурге первые фотографические снимки. Им же впервые были изготовлены художественные снимки — виды Кавказа, за которые на Парижской выставке в 1851 году он получил медаль. Это была первая медаль, присуждённая за фотографические работы.

    К пятидесятым годам прошлого столетия фотографированием занимались уже тысячи людей. Многие из них занялись усовершенствованием фотографического способа, и уже спустя десять лет йодосеребряные пластинки вышли из употребления. Появились стеклянные фотопластинки, покрытые тонким слоем светочувствительного вещества. При приготовлении таких пластинок их обливали жидким коллодием[1], содержащим иод, давали коллодию застыть, а затем погружали пластинку в раствор азотнокислого серебра, в котором коллодионный слой становился светочувствительным.

    Для фотосъёмки на таких пластинках требовались уже не минуты, а секунды. Но съёмку надо было производить на сырых, ещё не высохших пластинках, так как после высыхания слой терял свою светочувствительность. По этой причине пластинки нельзя было заготовлять впрок; их приходилось готовить непосредственно перед съёмкой.

    Изображение на таких пластинках получалось невидимым, скрытым и проявлялось, то-есть становилось видимым, только после погружения пластинки в специальный раствор, называемый проявителем. Этот раствор содержал галловую кислоту. Проявленное изображение нужно было закрепить, или, как говорят, зафиксировать. Для этого пластинки погружались в раствор бромистого калия (фиксажный раствор). Вскоре бромистый калий был заменён другим химическим веществом — гипосульфитом, который применяется в фиксажных растворах и сейчас. Особенность этого способа, названного мокрым коллодионным способом, заключалась в том, что изображение на пластинке получалось обратным натуре: тёмные предметы получались светлыми (точнее — прозрачными), а светлые — тёмными. Такое изображение называется негативом (рис. 2).

    Рис. 2. Негатив.

    Для получения изображения, соответствующего действительности, под негатив подкладывали лист бумаги, покрытый, как и пластинка, светочувствительным слоем коллодия. Свет, проходя через прозрачные места негатива, освещал бумагу, и после проявления эти участки бумаги темнели. Места бумаги, расположенные под тёмными участками негатива, освещались слабо либо совсем не освещались и после проявления слегка темнели или оставались совсем белыми. Таким образом тёмные и светлые участки негатива на бумаге как бы меняли свои места. Изображение получалось правильным, или, как его называют, позитивным (рис. 3).

    Рис. 3. Позитив.

    Мокрый коллодионный способ совершил подлинную революцию в фотографии. Качество снимков значительно улучшилось. Правая и левая стороны изображения были уже правильно расположены. Появилась возможность просто и неограниченно размножать фотографические снимки. Стоимость снимков значительно снизилась, и фотография стала более доступным занятием. Появились первые фотолюбители; число их быстро росло.

    Взгляните на рисунок 4. На нём изображён фотограф-турист середины прошлого столетия. Не лёгок был труд первых фотографов. Чтобы сделать несколько снимков, приходилось брать с собой не только фотоаппарат, стеклянные пластинки, проявитель, закрепитель и другие принадлежности, но и складную тёмную палатку — фотолабораторию. Ведь пластинки надо было приготовлять перед самой съёмкой, а делалось это в затемнённом помещении.

    Рис. 4. Фотограф-турист середины прошлого столетия.

    С тех пор прошло сто лет. За это время фотография значительно видоизменилась и усовершенствовалась, но принцип, положенный в основу мокрого коллодионного способа — разделение фотографии на два процесса: негативный и позитивный, сохранился до наших дней.

    Не забыт и сам мокрый коллодионный способ. Он с успехом применяется по настоящее время в полиграфическом производстве (см. стр. 52), хотя во всех других областях применения фотографии он давно уже вышел из употребления.

    Современные фотографические аппараты и светочувствительные фотопластинки и плёнки позволяют фотографировать не только днём, но и в ночные часы при свете небольших электрических ламп. Сейчас не составляет труда запечатлеть на фотоснимке быстро мчащийся автомобиль или летящий самолёт, спортсмена в момент его прыжка, полёт птиц и т. п.

    Светочувствительные пластинки, плёнки и бумага приготовляются теперь впрок и могут сохраняться годами. Фотоаппараты стали удобными и маленькими. Фотоаппарат и запас светочувствительных плёнок на 100 и больше снимков можно уложить в карман.

    Посмотрим теперь, как устроены современные фотографические аппараты и как получаются фотографические снимки.

    Поделитесь на страничке

    Следующая глава >

    history.wikireading.ru


    sitytreid | Все права защищены © 2018 | Карта сайта